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Problem formulation

Let µ1, . . . , µT be prescribed probability distributions on X × Y

(xt1, yt1), . . . , (xtn, ytn) ∼ µt , t = 1, . . . ,T

Goal: find functions ft : X → Y which minimize

1

T

T∑
t=1

E(x ,y)∼µt `(ft(x), y)

Regularization approach:

min
1

T

T∑
t=1

1

n

n∑
i=1

`(ft(xti ), yti ) + λ Ω(f1, . . . , fT )

The penalty term “encourages” common structure among the tasks /
uses prior knowledge that f1, . . . , fT are related
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Problem formulation (cont.)

Focus on linear regression and square loss: X ⊆ Rd , Y ⊆ R,
yti = w>t xti + εti

min
1

T

T∑
t=1

1

n

n∑
i=1

(yti − w>t xti )
2

︸ ︷︷ ︸
training error task t

+λ Ω(w1, . . . ,wT )︸ ︷︷ ︸
joint regularizer

Typical scenario: many tasks but only few examples per task

If the tasks are “related”, learning them jointly should perform better
than learning each task independently
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Example 1: user modeling

Each task is to predict a user’s ratings to products

CPU CD RAM · · · HD Screen Price Rating

1GHz Y 1GB · · · 40G 15in $1000 7
1GHz N 1.5GB · · · 20G 13in $1200 3

1.5GHz Y 1.5GB · · · 40G 17in $1700 5
2GHz Y 2GB · · · 80G 15in $2000 ?

1.5GHz N 2GB · · · 40G 13in $1800 ?

The ways different people make decisions about products are related.
How do we exploit this?
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Example 2: object detection

Multiple object detection in scenes: detection of each object
corresponds to a binary classification task

Learning common visual features enhances performance

Early work in ML used a hidden layer neural nets with hidden weights shared

by all the tasks [Baxter 96, Caruana 97, Silver and Mercer 96, etc.]
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Objective and questions

High dimensional setting!

What is the multi-task counterpart of smoothness / sparsity
assumptions used in single-task learning?

Statistical estimation

Optimization techniques
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Penalty function

min
1

T

T∑
t=1

1

n

n∑
i=1

(yti − w>t xti )
2 + λ Ω(w1, . . . ,wT )

1 Quadratic: encourages closeness of task parameters, or other linear
relationships
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Quadratic regularizer [Evgeniou et al. 05]

min
1

T

T∑
t=1

1

n

n∑
i=1

(yti − w>t xti )
2 + λ Ω(w1, . . . ,wT )

Let Ω(w) = w>Ew , with w ∈ RdT the concatenation of w1, . . . ,wT

E ∈ RdT×dT , symmetric positive definite, models tasks relationships

If E is block diagonal the tasks are learned independently

Example [Evgeniou and P., 04]: stay close to the average

Ω(w) =
T∑
t=1

‖wt‖2 +
1− γ
γ

T∑
t=1

‖wt −
1

T

T∑
s=1

ws‖2

γ ∈ [0, 1], γ = 1: independent tasks, γ = 0: identical tasks
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Feature space point of view

Equivalent to learn a single function on larger domain: (x , t) 7→ ft(x)

Linear case: ft(x) = v>Btx , for some v ∈ Rp (p ≥ dT ) and
Bt ∈ Rp×d matrices (task specific)

The learning problem can be rewritten as:

S(w) =
T∑
t=1

n∑
i=1

(yti − v>Btxti )
2 + λv>v

Linear multitask kernel: K ((x , t), (x ′, t ′)) = xB>t Bt′x
′

Can use kernel techniques (representer theorem, dual problem, etc.)
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Equivalent prolems

R(w) =
T∑
t=1

n∑
i=1

(yti − w>t xti )
2 + λw>Ew

S(v) =
T∑
t=1

n∑
i=1

(yti − v>Btxti )
2 + λv>v

Proposition. The problems are equivalent:

Given B := [B1, . . . ,BT ] full rank (dT ) then set E = (B>B)−1

Given E , let A be a square root of E and set B = A>E−1
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Example (revisited)

We choose

B>t = [(1− γ)
1
2 Id×d , 0d×d , . . . , 0d×d︸ ︷︷ ︸

t−1

, (γT )
1
2 Id×d , 0d×d , . . . , 0d×d︸ ︷︷ ︸

T−t

]

Interpretation

wt = B>t v =
√

1− γv0 +
√
γT vt = “common” + “task specific”

B>t Bt′ = (1− γ)Id×d + γT δtt′Id×d . Computing (B>B)−1 we confirm
that

w>Ew =
1

T

(
T∑
t=1

||wt ||22 +
1− γ
γ

T∑
t=1

||wt −
1

T

T∑
t′=1

wt′ ||22

)
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Penalty function

Define

W =

w1 . . . wT

 =

 w 1

...
wd


Consider

min
W

1

T

T∑
t=1

1

n

n∑
i=1

(yti − w>t xti )
2 + λ Ω(W )

1 Quadratic: encodes closeness of task parameters

2 Structured sparsity: few common variables
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2. Structured Sparsity

Favour matrices with many zero rows (few variables shared by the
tasks)

Ωs(W ) =
d∑

j=1

||w j ||2 =
d∑

j=1

√√√√ T∑
t=1

w 2
tj

Special case of group Lasso [Lounici et al. 09, Yuan and Lin, 06]
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2. Structured Sparsity (cont.)

Compare matrices W favoured by different norms (green = 0, blue = 1):

#rows = 13 5 2

Ωs = 19 12 8∑
tj |wtj | = 29 29 29
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Statistical analysis of structured sparsity

Linear regression model: yti = w>t xti + εti , i = 1, . . . , n, d � n

Noise: εti are i.i.d. N(0, σ2)

Sparsity pattern J(W ) :=

{
j :

T∑
t=1

w 2
tj > 0

}
. Assume |J(W )| 6 s

Variable not too correlated: 1
n

∣∣∣∣ n∑
i=1

(xti )j(xti )k

∣∣∣∣ ≤ 1−ρ
7s , ∀t, ∀j 6= k

Q1 (estimation) 1
T

T∑
t=1
‖ŵt − wt‖2 6 ?

Q2 (variable selection) Prob
{

J(Ŵ ) = J(W )
}
≈ 1 ?
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Estimation error bound

Theorem [Lounici et al. 2011] If λ = 4σ√
nT

√
1 + A log d

T , A ≥ 4 then w.h.p.

1

T

T∑
t=1

‖ŵt − wt‖2 ≤
(

cσ

ρ

)2 s

n

√
1 + A

log d

T

Dependency on the dimension d is negligible for large T

Compare to Lasso: 1
T

T∑
t=1
‖w (L)

t − wt‖2 ≥ c ′ sn log(d T )

Similar results for prediction error and variable selection
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Penalty Function

min
W

T∑
t=1

n∑
i=1

(yti − w>t xti )
2 + λ Ω(W )

1 Quadratic: encodes closeness of task parameters

2 Structured sparsity: few common variables

3 Spectral: few common features
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Spectral regularization

Favour matrices with low rank: Ω(W ) = rank(W ) (task vectors wt

lie on a low dimensional subspace)

Recall the SVD of a matrix

W = U Diag(σ1, . . . , σr ) V >

where U ∈ Rd×r and V ∈ RT×r are orthogonal, r = min(d ,T )

Approximate the rank with the trace norm [Fazel et al. 01]

Ωtr(W ) =
r∑

i=1

σi (W )

More general: Ω(W ) = ω(σ1, . . . , σr ), e.g. Schatten norms
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Optimization methods

Proximal gradient methods – require solving subproblem

min
W

1

2
‖W −W0‖2 + λΩ(W )

OK for `2,1-norm, trace norm

Using variational form:

Ω(W ) =
1

2
inf
D∈D

trace(D−1WW > + D)

where D is a subset of set of psd matrices [Argyriou et al. 08]

Diagonal case [Micchelli, Morales, P., 2010]:
D = {diag(λ1, . . . , λd) : λ ∈ Λ}, with Λ ⊆ Rd

++ a convex cone
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Variational form [Argyriou et al. 08]

Express Ω as

Ωtr(W ) =
1

2
min
D�0

{
tr(W >D−1W ) + tr(D)

}

min
W , D�0

T∑
t=1

n∑
i=1

(yti − w>t xti )
2 +

λ

2

[
tr(W >D−1W )︸ ︷︷ ︸

T∑
t=1

w>t D−1wt=w>Ew

+ tr(D)
]

E =


D−1 0 · · · 0

0 D−1 · · · 0
...

...
. . .

...
0 · · · · · · D−1


Jointly convex in (W ,D) – related to problem of learning the kernel.
[Bach et al. 04, Micchelli and Pontil, 2005]
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Optimization algorithm

W -minimization: solve T independent regularization problems
(e.g. SVM, ridge regression, etc.)

D-minimization: can be solved analytically (via an SVD)

D(W ) =
(WW >)

1
2

tr(WW >)
1
2

Theorem. By introducing a small perturbation

D(W ) =
(WW > + εI)

1
2

tr(WW > + εI)
1
2

we can show that the algorithm converges to the optimal solution.
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Experiment (Computer Survey) [Argyriou et al. 2008]

Test error vs. #tasks Eigenvalues of matrix D
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Performance improves with more tasks

A single most important feature shared by everyone

Dataset: consumers’ ratings of PC models: 180 persons (tasks), 8 training and 4 test examples.

13 binary inputs (RAM, CPU, price etc.). Integer output in {0, . . . , 10} (likelihood of purchase)
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Experiment (Computer Survey)

TE RAM SC CPU HD CD CA CO AV WA SW GU PR
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Method Test

Independent 15.05
Aggregate 5.52

Structured Sparsity 4.04
Trace norm 3.72

Quadratic + Trace 3.20

The most important feature (eigenvector of D) weighs technical
characteristics (RAM, CPU, CD-ROM) vs. price
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Nonlinear MTL

Regularizers can be extended to nonlinear functions using reproducing
kernel Hilbert spaces (RKHS)

Quadratic: RKHS of vector-valued functions [Micchelli and P. 05,

Evgeniou et al. 05, Caponnetto et al. 08]

Sparsity: multiple kernel learning [Rakotomanonjy et al. 2011]

Spectral: some technical issues of function representation arise
[Argyriou, Micchelli, P, 2009]
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More complex models and robustness

Multitask clustering [Evgeniou et al. 2005, Jacob et al 2008]

Composite regularizers: Ω(B ◦W ), e.g. Ω([w1 − w̄ , . . . ,wT − w̄ ]).
More challenging optimization problem [Argyriou et al. 2011]

Robust regularizer Ω(W ) = min
W=V+Z

Ω(V ) + sparse(Z )

e.g. robustness against outlier tasks [Chen et al. 2011]

Heterogeneous multitask feature learning [Argyriou et al. 2008b,

Kang et al. 2011, Romera-Paredes et al., 2012]

Extension of sparse coding [Olshausen and Field 1996] to MTL
[Maurer et al. 2012] (see also [Kumar and Daumé III, 2012])
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Diversification of features across groups

Example: recognizing identity
and emotion on a set of faces

emotion related feature
identity related feature

Assumptions:

Tasks in the same group share a low dimensional representation

Tasks from different groups tend to use different features

Massimiliano Pontil (CSML, UCL) Multi-Task Learning CCPR, 25/09/12 27 / 35



OrthoMTL [Romera-Paredes et al., 2012]

Encourage orthogonal features across different groups

min
{
Err(W ) + Err(V ) + γ

[
‖[W ,V ]‖tr + ρ‖W >V ‖2

Fr

]}
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Ridge Regression

MTL
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OrthoMTL−EN

Related convex problem under some conditions (see paper)
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Multi-task learning with dictionaries [Maurer et al. 2012]

Method

min
U,A

1

T

T∑
t=1

1

n

n∑
i=1

`(〈Uat , xti 〉, yti )

wt = Uat , where at ∈ RK and U = [u1, . . . , uK ] (may be linearly
dependent)

Sparse coding constraint: ‖at‖1 ≤ α

Scale constraint: ‖uk‖2 ≤ 1, {uk}Kk=1
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Multi-task learning with dictionaries (II)

Theorem [Maurer, P., Romera-Paredes, 2012] Let X be the unit ball of a
separable Hilbert space. Let δ > 0 and µ1, . . . , µT be probability measures
on X ×R. With probability ≥ 1− δ in the draw of zt ∼ (µt)

n, t = 1, ...,T

1
T

T∑
t=1

Ez∼µt `(〈Ûât , xti 〉, yti )− inf
U,A

1
T

T∑
t=1

Ez∼µt `(〈Uat , x〉, y)

≤ Lα

√
2Ktr(Σ̂)

nT + Lα

√
8‖Σ̂‖ log(2K)

n +

√
8 log 4

δ
nT

Uniform distribution: tr(Σ̂) ≈ 1, ‖Σ̂‖ ≈ 1/n

T < K : tasks are learned independently

T > K : term log K
n controls the bound (compare to O(

√
K/m) for

independenent task learning)
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Conclusions

Multi-task learning is ubiquitous – exploiting task relatedness can
enhance learning performance

Multi-task learning can be seen as a problem of matrix estimation

Reviewed different types of regularization methods, which naturally
extend complexity notions used in the single-task setting, addressing
their statistical and computational properties

Recent method to diversify features across heterogeneous groups of
tasks

MTL extension of sparse coding
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